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Abstract: This paper presents a hybrid optimization approach for the optimal coordination of Inverse Definite 
Minimum Time (IDMT) directional overcurrent relays in meshed power systems, namely Immune Algorithm 
and Particle Swarm Optimization (IA-PSO) algorithm. The algorithm is employed by coupling the immune 
information processing mechanism with the particle swarm optimization algorithm in order to achieve a better 
global solution with less computational effort. In protection coordination problem, the objective function to be 
minimized is the sum of the operating time of all main relays. The optimization problem is subject to a number 
of constraints which are mainly focused on the operation of the backup relay, which should operate if a primary 
relay fails to respond to the fault near to it, Time Dial Setting (TDS), Plug Setting (PS) and the minimum 
operating time of a relay. The proposed optimization algorithm aims to minimize the total operating time of 
each protection relay. Two systems are used as case study to check the efficiency of the optimization algorithm 
which are IEEE 4-bus and IEEE 6-bus models. Results are obtained and presented for IA and PS and IA-PSO 
algorithms. The obtained results for the studied cases are compared with those results obtained when using 
other optimization algorithms which are Teaching Learning-Based Optimization (TLBO), Chaotic Differential 
Evolution Algorithm (CDEA) and Modified Differential Evolution Algorithm (MDEA). From analysing the 
obtained results, it has been concluded that IA-PSO algorithm provides the most optimum solution with the 
best convergence rate. 
 
Key-Words: Meshed Power Systems, Directional Overcurrent Protection Relays, Optimal Coordination, 
Immune Algorithm, Particle Swarm Optimization, Hybrid Optimization Algorithms. 
 
Nomenclature  
IDMT Inverse Definite Minimum Time 
T Relay total operating time  
IF Fault current 
TDS Time Dial Setting 
PS Plug Setting 
CT Current transformer  
CTpr-rating Primary rating of CT 
Irelay Current seen by the relay 
OF Objective function 
TDSmin Minimum value for TDS 
TDSmax Maximum value for TDS 
Tmin Minimum value of relay operating time 
Tmax Maximum value of relay operating time 
CTI Coordination Time Interval  
Tpri-cl-in Operating time to clear near end fault 
Tpri-far-bus Operating time to clear far end fault 
Tprimary Operating time of primary relay 
Tbackup Operating time of backup relay 

Ncl and Nfar 
Number of relays installed at both ends 
of the primary line 

 

1 Introduction 
Due to the rapid development of huge industrial 
systems, stability and security issues of power 
systems have recently acquired more attention. The 
basic function of protection systems is to detect and 
remove the faulty parts as fast and selectively as 
possible. Therefore, various relays with different 
operating principles are used to detect system 
abnormalities and execute appropriate actions in 
order to rapidly isolate faulty components from a 
healthy system. Each protection relay needs to be 
coordinated with the relays protecting adjacent 
equipment. Hence, relays should not only be 
correctly operated, but also properly coordinated 
with each other by finding optimum relay settings. 
This gives importance to the problem of relays 
coordination.  

Directional overcurrent relay is a good technical 
and economic choice for protection of transmission 
and distribution power systems [1]. Such a relay 
with inverse time characteristics consists of an 
instantaneous unit and a time overcurrent unit.  
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The overcurrent unit has two parameters to be 
defined which are PS and TDS. The use of 
computers in the power systems application of relay 
coordination has relieved protection engineers from 
huge mathematical calculations. Conventionally, 
classical protection philosophy and parameter 
optimization techniques are reported in literature for 
relay coordination studies. In conventional classical 
protection approach, the looped transmission and 
distribution system are treated as radial in relay 
coordination studies.  

Relays at remote end are set first and 
corresponding backup relays are set thereafter from 
the coordination protection point of view. In this 
way, all possible paths are taken into account for 
optimal setting of relay parameters.  

Coordination of overcurrent relays requires the 
accurate selection of optimum settings. Out of both, 
only the values of TDS can be optimized while 
solving the coordination problem with the help of 
optimization algorithms. In protection coordination 
problem, the total operating time of all main relays 
is minimized. Constraints of the problem are 
considered in the secondary relay which should 
operate if the main relay fails to respond to the fault 
near to it, TDS and PS and minimum operating time 
of the relay.  

Table I represents the different optimization 
algorithms which were developed by researchers to 
provide optimum solution for relay settings and 
coordination in order to achieve optimum 
protection.  
 

TABLE I 
Literature for optimisation algorithm 

Ref. Optimization Algorithm 
[2] Evolutionary Algorithm (EA) 
[3] Differential Evolution Algorithm (DEA)  
[4] Modified Differential Evolution Algorithm   
[5] Self-Adaptive Differential Evolutionary 
[6] Particle Swarm Optimization (PSO)  

[7-8] Modified Particle Swarm Optimization   
[9] Evolutionary Particle Swarm Optimization  

[10] Box-Muller Harmony Search   
[11] Zero-one Integer Programming  
[12] Covariance Matrix Adaptation Evolution 

Strategy   
[13] Seeker Algorithm   
[14] Teaching Learning Based Optimization  
[15] Chaotic Differential Evolution Algorithm  
[16] Informative Differential Evolution Algorithm  
[17] Firefly Optimization Algorithm  
[18] Krill Herd Algorithm  
[19] Non-dominated Sorting Genetic Algorithm  
[20] Biogeography Based Optimization  

In this research work, a hybrid optimization 
technique namely IA-PSO is proposed to select the 
optimal values of relay settings and present a 
solution for the coordination problem between 
primary and backup relays. In this paper, IA, PSO 
and IA-PSO algorithms are applied to IEEE 4-bus 
and IEEE 6-bus systems which are modelled and 
simulated to verify the efficiency of the proposed 
hybrid algorithm. Moreover, the obtained results 
when using these three algorithms are compared 
with the published results obtained for TLBO, 
CDEA and MDEA algorithms. When compared 
with the other algorithms, IA-PSO algorithm shows 
faster convergence and provides an improvement in 
minimizing the total operating time (T) of each 
protection relay in the two studied cases. 
 
 
2 Optimal Relay Coordination 
Problem 
The operating time of IDMT relay is inversely 
proportional to the fault current. Hence, overcurrent 
relay will operate fast after sensing a high current. 
However, IDMT relays are categorized into 
standard inverse, very inverse and extremely inverse 
types. Relay characteristics depend on the type of 
standards selected for its operation. These standards 
can be ANSI, IEEE, IEC or user defined. Typically, 
there are overcurrent relays for protection against 
inter phase faults and phase to earth faults on the 
line.  

The tripping time of the relay follows a time over 
current delayed curve, in which the time delay 
depends upon the current. The two decisive factors 
are TDS and PS. The operating time of the relay is 
closely related to TDS, PS and the fault current (IF). 
The total operating time is given by a non-linear 
mathematical equation [3], [11-15] with respect to 
the coordination time constraint between backup 
and primary relays: 
 

F

pr rating

TDST
I

PS CT

β

α

γ
−

×
=
 

−  × 

                                    (1) 

 
α, β and γ are constants. According to IEEE 

standards [21], the values of these constants are 
given by 0.14, 0.02 and 1.0, respectively. IF is the 
fault current at CT primary terminal where the fault 
occurs while CTpr-rating is the primary rating of CT. 

The ratio between IF and CTpr-rating gives the 
current seen by the relay denoted by Irelay. 
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2.1 Objective Function 
As in Figure 1, a close-in fault (or near end fault) is 
a fault that occurs close to the relay and a far-bus 
fault (or far end fault) is a fault that occurs at the 
other end of the line.  

 
 

Fig. 1. Close-in and far-bus faults for primary relay. 
 

In coordination studies, the summation of the 
operating time of all the primary relays to clear a 
near or far end fault can be considered as an 
objective function that is to be minimized. 
Therefore, the objective function (OF) can be 
expressed as follows, as given in [4], [14-15]: 

1 1

farcl NN
i j
pri cl in pri far bus

i j
Minimize OF T T− − − −

= =

= +∑ ∑                 (3) 

where,  
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2.2 Constraints 
Three constraints are considered for the 
minimization problem. The first constraint is TDS of 
the relay which is the time delay before the relay 
operates whenever the fault current becomes equal 
to or greater than the PS setting [12-17]. 
 

min max
i i iTDS TDS TDS≤ ≤                                          (6) 

 
i varies between 1 and Ncl. TDSi

min and TDSi
max 

are the minimum and maximum limits of TDS 
which are 0.05 and 1.10 sec, respectively. The 
second constraint concerning PS takes the form:   
 

min max
i i iPS PS PS≤ ≤                                          (7) 

 i varies between 1 and Nfar. PSi
min and PSi

max are 
the minimum and maximum values of PS which are 
1.25 and 1.50, respectively. Relay operating time is 
related to the fault current which can be seen by the 
relay and the pickup current setting. Relay operating 
time is based on the type of the relay and it can be 
determined by standard characteristic curves of the 
relay or analytic formula. Hence, the relay operating 
time is defined by:  

 
min max

i i iT T T≤ ≤                              (8) 
 

Tmin and Tmax are the minimum and maximum 
values for the relay operating time which are 0.05 
and 1.00, respectively.  

The coordination time interval between the 
primary and the backup relays must be verified 
during the optimization procedure. In this paper, the 
chronometric coordination between the primary and 
the backup relays is used as equation (9):   

 
backup primaryT T CTI− ≥                              (9) 

 
Tbackup and Tprimary are the operating time of the 

backup and primary relay, respectively and CTI is 
the minimum coordination time interval.  

For electromechanical relays, CTI varies between 
0.30 and 0.40 sec, while for numerical relays CTI 
varies between 0.10 and 0.20 sec [13-14]. The value 
of Tbackup and Tprimary can be determined by equations 
(10) and (11) respectively. 
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3 Hybrid Immune Algorithm and 
Particle Swarm Optimization (IA-
PSO) Technique 
 
3.1 Overview of Immune Algorithm (IA) [26] 
Immune Algorithm (IA) has been widely used to 
solve optimization problems by applying the same 
principle of operation of the human immune system. 
According to [22-23], the capability of IA method 
for pattern recognition and memorization provides a 
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more efficient way to solve discrete optimization 
problems as compared to Genetic Algorithm (GA).  

The cost function and limit constraints are 
represented as antigen inputs, while the solution 
process is simulated by antibody production in the 
feasible space through a genetic operation 
mechanism. The calculation of affinity between 
antibodies is embedded within the algorithm to 
determine the promotion/suppression of antibody 
production [26]. 

An IA based decision making procedure [24-26] 
is proposed in this study. The population of memory 
cells is a collection of the antibodies (feasible 
solutions) accessible towards optimality, which is 
the key factor to achieve fast convergence for global 
optimization [24-25]. In this paper, a genetic coding 
structure of IA is adopted and the diversity and 
affinity of antibodies are calculated during the 
decision making process to find the optimal solution 
[26].  

The data structure of genes can be depicted as 
shown in Figure 2. For a feeder with N possible 
strategies of phase arrangement involving M object 
nodes, it will generate N antibodies having M genes 
in the antibody pool. The gene node (i) consists of a 
sequence of alternating sign-less integer numbers 
representing the candidate connection schemes of n 
branches connecting node i [24-26]. 
 

 
 

Fig. 2. Data structure of gens with corresponding 
information entropy. 

 
The diversity of feasible strategies in the 

population is measured between the antibodies. This 
will be increased to prevent local optimization 
during the searching process of optimal solution. 
For each evolving generation, the new antibodies 
are generated to strengthen the diversity of antibody 
population in the memory cell [24-26]. With the 
data structure of genes in Figure 2, the entropy Ej of 
the jth gene (j = 1, 2, ... , M) is defined as follows: 

 

1
.log

N

j ij ij
i

E P P
∞

=

= −∑                            (12) 

 
     N is the quantity of antibodies and Pij is the 
probability that the jth allele comes out at the jth 
gene. If all alleles at the jth gene are the same, the 
entropy of the jth becomes zero. The diversity of all 
genes is calculated as the mean value of informative 
entropy as follows [26]: 
 

1

1 M

j
j

E E
M =

= ∑                                         (13) 

 
If the affinity of some antibodies is the same 

during immune process, it will influence the 
searching efficiency of optimization for the planning 
of phase arrangement. In this paper, as in [24-26], 
two types of affinity are calculated for the proposed 
method. One type is the affinity between antibodies 
which is defined as: 
 

( ) 1
1 (2)ij

Ab
E

=
+

               (14) 

 
     E (2) is the information entropy of these two 
antibodies. It should be noted that the genes of the 
ith antibody and the jth antibody will be the same 
when E(2) is equal to zero. The affinity between the 
ith and jth antibody, (Ab)ij, will be within the range [0, 
1]. The other type of the affinity is the one between 
antibody and antigen (i.e. the objective function) 
[26]. 
 

( ) 1
1i

i

Ag
OPT

=
+

                 (15) 

 
     OPTi is the total cost representing the connection 
between the antigen and antibody i. The antigen 
with the maximum affinity (Ag)i will be the optimal 
phase arrangement within the feasible space. The 
process to solve the cost function for optimal 
solution is simulated by the interaction of antibody 
and antigen in IA [26]. During evolution of genes, 
the candidates of solution with high affinity are 
selected and included in the memory cells, which is 
then used to generate new candidate solution.  

The computation procedure is therefore executed 
as follows [26]: 

 
Step 1: Recognition of antigens, 
Step 2: Production of initial antibody population, 
Step 3: Calculation of affinity, 
Step 4: Evaluation and selection, 
Step 5: Crossover and mutation, 
Step 6: Decision on optimal strategy. 
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During this process, the antibody having high 
affinities with the antigen will be added to the new 
memory cell, which will be maintained after 
applying the operation of crossover, mutation and 
selection for the population. The search process of 
optimization continues until no further improvement 
in relative affinity can be obtained and thus the 
antibody with the highest affinity in the memory cell 
will be the optimal strategy for the solution [26]. 

 
3.2 Overview of Particle Swarm 
Optimization (PSO) Algorithm [26] 
Particle Swarm Optimization (PSO) is a population-
based evolutionary technique which has a number of 
key advantages over other optimization techniques. 
PSO finds the optimal solution using a population of 
particles. Each particle represents a candidate 
solution to the problem. PSO is basically developed 
through simulation of bird flocking in two 
dimensional spaces [27]. Attractive features of the 
PSO include ease of implementation, the fact that no 
gradient information is required and its application 
can be extended in neural network training and 
minimizing function. The PSO is presented by [26-
32] as follows:  

Step 1: Each individual particle has the following 
properties: a current position in search space xi, a 
current velocity Vi, and a personal best position 
Xpbest, 

Step 2: The personal best position Xpbest, 
corresponds to the position in search space, where 
particle i presents the smallest error as determined 
by the objective function f, assuming a minimization 
task, 

Step 3: The global best position denoted by Xgbest, 
represents the position yielding the lowest error 
among all the Xpbest

’s.  
Consider a swarm of P particles; with each 

particle’s position representing possible solution 
point in the design problem space. For each particle, 
the authors in [29-31] proposed that its position xi is 
updated in the following manner: 
 
( ) ( ) [ ]

[ ]
1 1

2 2

1 . ( ) ( )

. ( ) ( )
i i best i

best i

V t W V t c r P t x t

c r G t x t

+ = + + × −

+ × −
      (16) 

 
and, 
 
( ) ( ) ( )1 1i i ix t x t V t+ = + +               (17) 
 
Subscript t indicates a time increment, Xpbest(t) 

represents the best ever position of particle i at time 
t, and Xgbest(t) represents the global best position in 

the swarm at time t. r1 and r2 represent uniform 
random numbers between 0 and 1.  

To allow the product c1×r1 or c2×r2 to have a 
mean value of 1, c1 and c2 are assumed constant 
values typically in the range of 2 to 4. Authors in 
[27] proposed that the cognitive and social scaling 
parameters c1 and c2 can be selected such that 
c1=c2=2. The factor w is the inertia weight.  

For large W, the search becomes more global, 
while for smaller one, the search becomes more 
local. The coefficients c1 and c2 are learning factors, 
which help particles to accelerate towards better 
areas of the solution space [31-32]. 
 
3.3 Overview of IA-PSO Algorithm [26] 
During calculations, it is important to avoid PSO 
sinking into a local optimized solution. The 
characteristics of a particle are calculated by the 
basic PSO method as mentioned above, in which 
each particle undergoes vaccination and 
immunization. Each PSO particle corresponds to an 
antibody of IA, and each element of particle is equal 
to each gene of the antibody. The adaptive degrees 
of particles can be improved by vaccination. The 
higher the adaptive degree of a particle, the better is 
the particle.  

Hence, to avoid trapping in a local optimal 
solution and ensure the search capability of a near 
global optimal solution, mutation is employed as it 
can play an important role in IA-PSO. The process 
of IA-PSO can be described as follows [33-36]: 

Step 1: An initial particle swarm is randomly 
generated for which there is a random initial 
solution and speed. 

Step 2: The next position (X’
id) of a particle can 

be calculated according to the current position (Xid) 
of that particle, original speed (Vid) of the particle, 
experienced best position (Pid) of the particle and 
experienced best position (Pgd) of particle swarm. 
The speed of particle is calculated according to 
equation (16). The new solution is then calculated 
according to equation (17), 

Step 3: After particles have arrived at new 
positions, each particle is compared with its 
experienced best position, Pid. If the new particle is 
improved, Pid will be replaced by the new improved 
particle. Similarly, each particle is compared with 
the experienced best position Pgd of particle swarm, 
if the new particle is better; Pgd will be replaced by 
it, 

Step 4: The optimized particle swarm is 
inoculated, 

Step 5: Immune vaccination, for this there are 
three main parts: picking-up vaccine, vaccination, 
and immune selection. Some characteristic 
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information picked-up from a person’s pre-
knowledge about the problem to be solved, are 
regarded as bacteria used to change a certain 
integrant of the particle, aimed at guiding the search 
process. However, the post-vaccinal particle must be 
checked by immune selection, which is capable of 
suppressing the degradation phenomena. If the 
fitness of the post-vaccinal particle is smaller than 
the original one, the original one will be preserved; 
otherwise, the post-vaccinal particle will be 
regarded as the new particle and replace the original 
particle. Therefore, the optimized particle swarm is 
undergoes immunization and hence, a new particle 
swarm is generated, 

Step 6: The newly generated particle at Step 5 
above is returned to Step 2 and calculations are 
repeated until the optimal solution is found or the 
maximum iterative number is reached. 
 
 
4 Case Study 
The optimization algorithms IA, PSO and IA-PSO 
are validated and tested on two systems, namely 
IEEE 4-bus and IEEE 6-bus models as shown in 
Figures 3.a and 3.b, respectively.  

The first case study consists of two power 
generators, four lines and eight IDMT directional 
overcurrent relays. The objective of the optimization 
problem in this case is to coordinate the settings of 
eight relays. Accordingly, there are 16 decision 
variables which are TDS1 to TDS8 and PS1 to PS8. 

The second case study consists of three power 
generators, seven lines and fourteen IDMT 
directional overcurrent relays. The objective of the 
optimization problem in this case is to coordinate 
the settings of fourteen relays. Accordingly, there 
are 28 decision variables which are TDS1 to TDS14 
and PS1 to PS14.  

CTI is selected to take the value of 0.30 sec in 
each of the studied cases.  

 

 
(a) 

 
(b) 

Fig. 3. Case study systems:  
(a) IEEE 4-bus, (b) IEEE 6-bus.  

 
For each case study, the values used for IF and 

CTpr_rating are listed in Tables II and III such that the 
data related to Ti

Pri-far-bus and Tj
Pri-far-bus are shown in 

Table II, while the data related to Tx
backup and Ty

primary 
are shown in Table III [15]. 
 

TABLE II 
IF and CTpr-rating for T ipri_cl_in and Tj

pri_far_bus in case study: 
(a) IEEE 4-bus, (b) IEEE 6-bus. 

(a) 

T ipri_cl_in T jpri_far_bus 

TDSi Ii
F CTi

pr-rating TDSj Ij
F CTj

pr-rating 
TDS1 20.32  0.4800 TDS2 23.75  0.4800 
TDS2 88.85  0.4800 TDS1 12.48  0.4800 
TDS3 13.60  1.1789 TDS4 31.92  1.1789 
TDS4 116.81  1.1789 TDS3 10.38  1.1789 
TDS5 116.70  1.5259 TDS6 12.07  1.5259 
TDS6 16.67  1.5259 TDS5 31.92  1.5259 
TDS7 71.70  1.2018 TDS8 11.00  1.2018 
TDS8 19.27  1.2018 TDS7 18.91  1.2018 

(b) 

T ipri_cl_in T jpri_far_bus 

TDSi Ii
F CTi

pr-rating TDSj Ij
F CTj

pr-rating 
TDS1 2.5311 0.2585 TDS2 5.9495 0.2585 
TDS2 2.7376 0.2585 TDS1 5.3752 0.2585 
TDS3 2.9723 0.4863 TDS4 6.6641 0.4863 
TDS4 4.1477 0.4863 TDS3 4.5897 0.4863 
TDS5 1.9545 0.7138 TDS6 6.2345 0.7138 
TDS6 2.7678 0.7138 TDS5 4.2573 0.7138 
TDS7 3.8423 1.7460 TDS1 6.3694 1.7460 
TDS8 5.6180 1.7460 TDS2 4.1783 1.7460 
TDS9 4.6538 1.0424 TDS3 3.8700 1.0424 
TDS10 3.5261 1.0424 TDS4 5.2696 1.0424 
TDS11 2.5840 0.7729 TDS5 6.1144 0.7729 
TDS12 3.8006 0.7729 TDS6 3.9005 0.7729 
TDS13 2.4143 0.5879 TDS1 2.9011 0.5879 
TDS14 5.3541 0.5879 TDS2 4.3350 0.5879 
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TABLE III 
IF and CTpr-rating for Tx

backup and T yprimary in case study:  
(a) IEEE 4-bus, (b) IEEE 6-bus. 

(a) 

T xbackup T ypimary 
Relay 
No. IF

i CTi
pr-rating 

Relay 
No. IF

j CTj
pr-rating 

5 20.32  1.5259 1 20.32  0.4800 
5 12.48  1.5259 1 12.48  0.4800 
7 13.61  1.2018 3 13.61  1.1789 
7 10.38  1.2018 3 10.38  1.1789 
1 116.81  0.4800 4 116.81  1.1789 
2 12.07  0.4800 6 12.07  1.5259 
2 16.67  0.4800 6 16.67  1.5259 
4 11.00  1.1789 8 11.00  1.2018 
4 19.27  1.1789 8 19.27  1.2018 

(b) 

T xbackup Ty
primary 

Relay  
No. IF

i      CTi
pr-rating 

Relay 
No. IF

j  CTj
pr-rating 

8  4.0909  1.7460  1  5.3752  0.2585 
11 1.2886  0.7729  1  5.3752  0.2585 
8 2.9323  1.7460  1 2.5311  0.2585 
3 0.6213   0.4863  2 2.7376  0.2585 
3 1.6658  0.4863  2 5.9495  0.2585 

10 0.0923  1.0424  3 4.5897  0.4863 
10 2.5610  1.0424  3 2.9723  0.4863 
13 1.4995  0.5879  3 4.5897  0.4863 
1 0.8869  0.2585  4 4.1477  0.4863 
1 1.5243  0.2585  4 6.6641  0.4863 

12 2.5444  0.7729  5 4.2573  0.7138 
12 1.4549  0.7729  5 1.9545  0.7138 
14 1.7142  0.5879  5 4.2573  0.7138 
3 1.4658  0.4863  6 6.2345  0.7138 
3 1.1231  0.4863   6 6.2345  0.7138 

11 2.1436  0.7729   7 4.1783  1.7460 
2 2.0355  0.2585   7 4.1783  1.7460 

11 1.9712  0.7729   7 3.8423  1.7460 
2 1.8718  0.2585   7 3.8423  1.7460 

13 1.8321  0.5879  9 5.2696  1.0424 
4 3.4386   0.4863 9 5.2696  1.0424 

13 1.6180  0.5879  9 4.6538  1.0424 
4 3.0368  0.4863  9 4.6538  1.0424 

14 2.0871  0.5879   11 3.9005  0.7729 
6 1.8138  0.7138   11 3.9005  0.7729 

14 1.4744  0.5879   11 2.5840  0.7729 
6 1.1099  0.7138   11 2.5840  0.7729 
8 3.3286  1.7460   12 3.8006  0.7729 
2 0.4734  0.2585  12 3.8006  0.7729 
8 4.5736  1.7460  12 6.1144  0.7729 
2 1.5432  0.2585  12 6.1144  0.7729 

12 2.7269  0.7729  13  4.3350  0.5879 
6 1.6085  0.7138  13 4.3350  0.5879 

12 1.8360  0.7729  13 2.4143  0.5879 
10  2.0260  1.0424  14 2.9011  0.5879 
4 0.8757  0.4863  14 2.9011  0.5879 

10 2.7784  1.0424  14 5.3541  0.5879 
4 2.5823  0.4863  14 5.3541  0.5879 

Further details on the values of the parameters 
used for each of the three algorithms are mentioned 
in the Appendix.  
 
 
5 Simulation Results and Comparison  

The convergence characteristics for applying 
each of the three optimization algorithms (IA, PSO 
and IA-PSO) for the two cases of IEEE 4-bus and 6-
bus systems are presented in Figures 4.a and 4.b, 
respectively. It is clear that IA-PSO algorithm 
provides the fastest convergence rate when 
compared with that observed when using IA and 
PSO algorithms.  
 

 
       (a) 

 
        (b) 

Fig. 4. Convergence characteristics of IA, PSO and              
IA-PSO in case study: (a) IEEE 4-bus, (b) IEEE 6-bus.  

 
5.1 Optimal Relay Settings 
The new optimal relays settings (TDS and PS) for 
each relay in the two studied cases are obtained 
using IA, PSO and IA-PSO algorithms and 
presented in Table IV. 
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TABLE IV 
Optimal relays settings: (a) IEEE 4-bus, (b) IEEE 6-bus. 

 (a) 

Relay  
No. IA PSO IA-PSO 

1 TDS 0.0511 0.0528 0.0560 
PS 1.2922 1.3533 1.4583 

2 TDS 0.2148 0.2235 0.2415 
PS 1.4243 1.5999 1.7156 

3 TDS 0.0504 0.0529 0.0561 
PS 1.2645 1.3263 1.4309 

4 TDS 0.1536 0.1602 0.1732 
PS 1.5267 1.5913 1.6174 

5 TDS 0.1279 0.1339 0.1441 
PS 1.5893 1.5914 1.6172 

6 TDS 0.0503 0.0526 0.0563 
PS 1.6961 1.3276 1.4309 

7 TDS 0.1346 0.1411 0.1543 
PS 1.5765 1.4922 1.7178 

8 TDS 0.0506 0.0543 0.0566 
PS 1.3569 1.3276 1.4305 

    (b) 

Relay 
No. IA PSO IA-PSO 

1 TDS 0.1534 0.2602 0.4064 
PS 0.9833 0.5864 0.4722 

2 TDS 0.2836 0.4739 0.7506 
PS 0.9776 0.5764 0.4709 

3 TDS 0.1469 0.2406 0.3872 
PS 0.8219 0.5102 0.4119 

4 TDS 0.1522 0.2711 0.4031 
PS 0.9844 0.5349 0.4726 

5 TDS 0.0754 0.1268 0.2005 
PS 0.8215 0.4891 0.4118 

6 TDS 0.0754 0.1264 0.2011 
PS 0.9065 0.5411 0.4437 

7 TDS 0.0754 0.1265 0.2003 
PS 0.8212 0.4892 0.4109 

8 TDS 0.0744 0.1265 0.2133 
PS 0.8208 0.4886 0.4108 

9 TDS 0.0758 0.1268 0.2006 
PS 0.8215 0.4854 0.4124 

10 TDS 0.0854 0.1424 0.2265 
PS 0.9868 0.5877 0.4724 

11 TDS 0.0984 0.1647 0.2610 
PS 0.9819 0.5872 0.4618 

12 TDS 0.0781 0.1401 0.2039 
PS 0.9853 0.5459 0.4739 

13 TDS 0.0772 0.1265 0.2002 
PS 0.9624 0.5715 0.4642 

14 TDS 0.1078 0.1779 0.2837 
PS 0.9842 0.5864 0.3731 

 
5.2 Optimal CTI 
Optimal CTI, between the backup and primary 
overcurrent relays, is calculated using the obtained 
optimum values of TDS and PS for each of the two 

studied cases when using MDEA, TLBO, IA, PSO 
and IA-PSO optimization algorithms, as shown in 
Table V.  

From Table V, it is observed that IA-PSO 
optimization algorithm generally gives minimum 
CTI values when compared with those obtained 
when using other optimization algorithms. 
 

TABLE V 
Optimal CTI value: (a) IEEE 4-bus, (b) IEEE 6-bus. 

    (a) 

Relay                     
No. 

MDEA 
[4] 

TLBO 
[14] IA PSO IA-PSO 

1 4 0.300 0.539 0.438 0.384 0.304 
2 6 0.348 0.649 0.538 0.372 0.312 
2 6 0.299 0.600 0.523 0.376 0.318 
4 8 0.397 0.510 0.436 0.309 0.313 
4 8 0.299 0.432 0.348 0.408 0.324 
5   1 0.299 0.300 0.312 0.338 0.329 
5  1 0.400 0.356 0.311 0.492 0.322 
7  3 0.299 0.355 0.503 0.357 0.309 
7 3 0.349 0.382 0.322 0.313 0.317 

   (b) 

Relay  
No. 

MDEA 
[4] 

TLBO 
[14] IA PSO IA-PSO 

8 1 0.288107 2.18859 0.9532 0.6123 0.3439 
11 1 4.029328 1.534819 0.9242 0.4267 0.2362 
8 1 0.80684 3.249765 1.2657 0.9043 0.3002 
3 2 1669.695 2.201281 1.1544 0.6539 0.3531 
3 2 0.199929 0.438233 0.3369 0.32567 0.3004 
10 3 -0.18123 0.418234 0.3187 0.3156 0.3057 
10 3 0.378005 1.236218 0.8239 0.3447 0.3054 
13 3 0.300372 0.30791 1.0543 0.3257 0.3003 
1 4 0.458382 0.843753 0.5564 0.3355 0.3009 
1 4 0.199845 0.517069 0.3653 0.3387 0.3129 
12 5 0.225775 0.937599 0.6249 0.3012 0.3455 
12 5 0.839275 1.525362 1.0658 0.4259 0.3324 
14 5 0.519282 1.180526 0.7862 0.3294 0.3753 
3 6 0.578187 0.551088 0.3675 0.3139 0.3435 
3  6 0.347919 0.30015 0.3045 0.3034 0.3325 

11  7 0.200146 1.373804 0.9156 0.3754 0.3212 
2  7 0.238046 0.982896 0.6550 0.3134 0.3564 

11  7 0.237149 1.472532 0.8814 0.4223 0.3247 
2  7 0.200045 1.019525 0.6795 0.3142 0.3038 

 
5.3 Comparing Results  
Table VI presents the minimum values of the 
objective function which are obtained when using 
IA, PSO and IA-PSO algorithms for each case 
study. It also shows the published results of the 
minimum objective function values for other 
optimization algorithms for each system [4, 14, 15]. 
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TABLE VI 
OF Comparison for case study:  
(a) IEEE 4-bus, (b) IEEE 6-bus. 

 (a) 

 Algorithm  OF (sec) 
TLBO [14] 5.5890 
MDEA [4] 3.6674 
CDEA [15] 3.6774 
IA 3.6758 
PSO 3.6524 
IA-PSO 3.1239 

   (b) 

 Algorithm  OF (sec) 
TLBO [14] 23.7878 
CDEA [15] 10.6272 
MDEA [4] 10.3514 
IA   9.3468 
PSO   8.1245 
IA-PSO   7.6722 

 
From Table VI, though IA and PSO algorithms 

provide better results than TLBO, CDEA and 
MDEA, still IA-PSO algorithm offers the best 
performance and provides the minimum objective 
function when compared with the other optimization 
algorithms. This proves the validity of the proposed 
algorithm in relays coordination.  
 
 
6 Conclusions 

In this paper, three optimization algorithms, 
namely IA, PSO, and IA-PSO, were presented to 
solve the coordination problem of IDMT directional 
overcurrent relays. The proposed optimization 
algorithms were validated and tested on IEEE 4-bus 
and IEEE 6-bus meshed power system models.  

Though the three algorithms showed better results 
than those obtained in literature for other 
optimization algorithms, such as TLBO, CDEA and 
MDEA, robustness and feasibility of IA-PSO 
algorithm were clearly observed in the obtained 
results.  

Based on the obtained simulation results, IA-PSO 
in particular proved its superiority in providing the 
minimum operating time T of relays at a fast 
convergence rate as well as securing minimum CTI 
between primary and backup relays. This was 
achieved through finding the optimum TDS and PS 
values of each relay. The advantages encountered 
when using IA-PSO are attributed to its hybrid 
nature which combines the immune information 
processing mechanism and the particle swarm 
optimization algorithm to achieve better and fast 

solution. Therefore, it is recommended to use the 
proposed IA-PSO as an efficient hybrid 
optimization algorithm in the coordination of 
directional overcurrent relays. 

Future work will consider developing the 
proposed algorithm to be capable of dealing with 
more complicated cases of optimal coordination of 
overcurrent relays. These cases may include 
conflicting objective functions and various systems 
topologies of large power systems that may be 
equipped with FACTS devices, Fault Current 
Limiter (FCL) or renewable energy resources. 
 
 
7 Appendix 
 
7.1 IA Algorithm 
Replacement rate = 0.15, 
Cloning rate = 0.20, 
Mutation rate = 0.15, 
Suppression threshold = 10-6, 
Percentile amount of clones to be re-selected = 0.80, 
Pruning threshold = 1.10, 
Population size = 100,  
Maximum number of generation = 150. 
 
7.2 PSO Algorithm 
c1 = 0.50, c2 = 1.50, W = 0.70, 
Population size = 100,  
Maximum number of generation = 150. 
 
7.3 IA-PSO Algorithm 
c1 = 0.20, c2 = 1.40, W = 0.90, 
Replacement rate = 0.15, 
Cloning rate = 0.20, 
Mutation rate = 0.15,  
Suppression threshold = 10-6, 
Percentile amount of clones to be re-selected = 0.50, 
Pruning threshold = 1.00, 
Population size = 100,  
Maximum number of generation = 150. 
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